Citric Acid Anhydrous 1kg FCC

25,00 incl. VAT

Citric Acid Anhydrous 1kg FCC

C6H8O7
M.W: 192,12 g/mol
CAS Registry Number: 77-92-9
https://pubchem.ncbi.nlm.nih.gov/compound/Citric-acid

SKU: 330629 Categories: , Tags: ,
Description

Citric Acid Anhydrous 1kg FCC

Citric Acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the metabolism of all aerobic organisms.

More than two million tons of citric acid are manufactured every year. It is used widely as an acidifier, as a flavoring, and a chelating agent.

citrate is a derivative of citric acid; that is, the saltsesters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate anion is written as C6H5O3−7 or C3H5O(COO)3−3.

Natural occurrence and industrial production

Citric Acid Anhydrous 1kg FCC - CAS Registry Number: 77-92-9

Lemons, oranges, limes, and other citrus fruits possess high concentrations of citric acid

It exists in a variety of fruits and vegetables, most notably citrus fruitsLemons and limes have particularly high concentrations of the acid; it can constitute as much as 8% of the dry weight of these fruits (about 47 g/L in the juices). The concentrations of citric acid in citrus fruits range from 0.005 mol/L for oranges and grapefruits to 0.30 mol/L in lemons and limes; these values vary within species depending upon the cultivar and the circumstances in which the fruit was grown.

It was first isolated in 1784 by the chemist Carl Wilhelm Scheele, who crystallized it from lemon juice.

Industrial-scale citric acid production first began in 1890 based on the Italian citrus fruit industry, where the juice was treated with hydrated lime (calcium hydroxide) to precipitate calcium citrate, which was isolated and converted back to the acid using diluted sulfuric acid. In 1893, C. Wehmer discovered Penicillium mold could produce citric acid from sugar. However, microbial production of citric acid did not become industrially important until World War I disrupted Italian citrus exports.

In 1917, American food chemist James Currie discovered certain strains of the mold Aspergillus niger could be efficient citric acid producers, and the pharmaceutical company Pfizer began industrial-level production using this technique two years later, followed by Citrique Belge in 1929. In this production technique, which is still the major industrial route to citric acid used today, cultures of A. niger are fed on a sucrose or glucose-containing medium to produce citric acid. The source of sugar is corn steep liquormolasses, hydrolyzed corn starch, or other inexpensive, sugary solution. After the mold is filtered out of the resulting solution, citric acid is isolated by precipitating it with calcium hydroxide to yield calcium citrate salt, from which citric acid is regenerated by treatment with sulfuric acid, as in the direct extraction from citrus fruit juice.

In 1977, a patent was granted to Lever Brothers for the chemical synthesis of citric acid starting either from aconitic or isocitrate/alloisocitrate calcium salts under high pressure conditions; this produced citric acid in near quantitative conversion under what appeared to be a reverse, non-enzymatic Krebs cycle reaction.

Global production was in excess of 2,000,000 tons in 2018. More than 50% of this volume was produced in China. More than 50% was used as an acidity regulator in beverages, some 20% in other food applications, 20% for detergent applications, and 10% for applications other than food, such as cosmetics, pharmaceuticals, and in the chemical industry.

Applications

Food and drink

Citric Acid Anhydrous 1kg FCC - CAS Registry Number: 77-92-9

Powdered citric acid being used to prepare lemon pepper seasoning

Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Within the European Union it is denoted by E number E330. Citrate salts of various metals are used to deliver those minerals in a biologically available form in many dietary supplements. It has 247 kcal per 100 g. In the United States the purity requirements for citric acid as a food additive are defined by the Food Chemicals Codex, which is published by the United States Pharmacopoeia (USP).

It can be added to ice cream as an emulsifying agent to keep fats from separating, to caramel to prevent sucrose crystallization, or in recipes in place of fresh lemon juice. It is used with sodium bicarbonate in a wide range of effervescent formulae, both for ingestion (e.g., powders and tablets) and for personal care (e.g.bath saltsbath bombs, and cleaning of grease). It is sold in a dry powdered form is commonly sold in markets and groceries as “sour salt”, due to its physical resemblance to table salt. It has use in culinary applications, as an alternative to vinegar or lemon juice, where a pure acid is needed. It can be used in food coloring to balance the pH level of a normally basic dye.

Cleaning and chelating agent

Citric Acid Anhydrous 1kg FCC - CAS Registry Number: 77-92-9

Structure of an iron(III) citrate complex.

Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. By chelating the metals in hard water, it lets these cleaners produce foam and work better without need for water softening. It is the active ingredient in some bathroom and kitchen cleaning solutions. A solution with a six percent concentration of citric acid will remove hard water stains from glass without scrubbing. It can be used in shampoo to wash out wax and coloring from the hair. Illustrative of its chelating abilities, it was the first successful eluant used for total ion-exchange separation of the lanthanides, during the Manhattan Project in the 1940s. In the 1950s, it was replaced by the far more efficient EDTA.

In industry, it is used to dissolve rust from steel and passivate stainless steels.

Cosmetics, pharmaceuticals, dietary supplements, and foods

Citric acid is used as an acidulant in creams, gels, and liquids. Used in foods and dietary supplements, it may be classified as a processing aid if it was added for a technical or functional effect (e.g. acidulent, chelator, viscosifier, etc.). If it is still present in insignificant amounts, and the technical or functional effect is no longer present, it may be exempt from labeling <21 CFR §101.100(c)>.

Citric acid is:

  • an alpha hydroxy acid and is an active ingredient in chemical skin peels.
  • commonly used as a buffer to increase the solubility of brown heroin.
  • used as one of the active ingredients in the production of facial tissues with antiviral properties.

Other uses

The buffering properties of citrates are used to control pH in household cleaners and pharmaceuticals.

Is used as an odorless alternative to white vinegar for fabric dyeing with acid dyes.

Sodium citrate is a component of Benedict’s reagent, used for both qualitative and quantitative identification of reducing sugars.

It can be used as an alternative to nitric acid in passivation of stainless steel.

Can also be used as a lower-odor stop bath as part of the process for developing photographic filmPhotographic developers are alkaline, so a mild acid is used to neutralize and stop their action quickly, but commonly used acetic acid leaves a strong vinegar odor in the darkroom.

Citric acid/potassium-sodium citrate can be used as a blood acid regulator.

It is an excellent soldering flux, either dry or as a concentrated solution in water. It should be removed after soldering, especially with fine wires, as it is mildly corrosive. It dissolves and rinses quickly in hot water.

Synthesis of other organic compounds

Citric acid is a versatile precursor to many other organic compounds. Dehydration routes give itaconic acid and its anhydride. Citraconic acid can be produced via thermal isomerization of itaconic acid anhydride. The required itaconic acid anhydride is obtained by dry distillation of citric acid. Aconitic acid can be synthesized by dehydration of citric acid using sulfuric acid:

(HO2CCH2)2C(OH)CO2H → HO2CCH=C(CO2H)CH2CO2H + H2O

Acetonedicarboxylic acid can also be prepared by decarbonylation of citric acid in fuming sulfuric acid:

Safety

Although a weak acid, exposure to pure citric acid can cause adverse effects. Inhalation may cause cough, shortness of breath, or sore throat. Over-ingestion may cause abdominal pain and sore throat. Exposure of concentrated solutions to skin and eyes can cause redness and pain. Long-term or repeated consumption may cause erosion of tooth enamel.